Peripheral Nerve Blocks for Pediatric Anesthesia

Katie Telischak, MD
Odinakachukwu Ehie, MD
UCSF Department of Anesthesia and Perioperative Care

Updated 11/2019
Disclosures

No relevant financial relationships
Learning Objectives:

• Review the indications and contraindications for peripheral nerve blocks (PNBs) in children

• Identify the basic anatomy of the common PNBs including TAP, ESP, Supraclavicular, Femoral, and Popliteal blocks

• Describe the sensory innervation of the nerves covered by the above blocks

• Assess indications for choosing particular PNBs based on the analgesia provided
Peripheral Nerve Blockade (PNB)

Indications

- Important tool in multimodal pain control for surgery on the extremities or smaller low abdominal incisions
- May assist with opioid sparing anesthesia
- May reduce dose exposure for general anesthetic
- May reduce perioperative pain and the morbidity associated with undertreated pain in children
- In settings with limited postoperative monitoring and analgesic options that PNB can be a safe way to improve pain control in wards
Peripheral Nerve Blockade

Contraindications

• Absolute:
 - Parental or patient refusal
 - Local infection
 - Allergy to local anesthetic

• Relative:
 - Pre-existing neurologic deficits
 - Coagulation disorders
TAP Block

• Indications: Lower abdominal surgery

• Dosing: 0.3-0.5ml/kg/side of 0.25% bupivacaine

• Distribution: T10-L1
 • Abdominal skin, muscles, and parietal peritoneum via block to the intercostal nerves, subcostal nerve, iliohypogastric, and ilioinguinal nerves.

• Duration: variable, likely 8-12 hrs

• Complications: Peritoneal entry and bowel injury

Source: NYSORA.COM
Transversus Abdominis Plane (TAP) Block

Indications

- Useful alternative in pediatric patients with spinal anomalies preventing neuraxial anesthesia

- Most suitable for abdominal surgery below the umbilicus, such as appendectomy, colectomy, hernia repair

- Orange arrow in image indicates the target fascial layer for the needle.

Orange arrow indicates needle trajectory
EOM = External Oblique Muscle
IOM = Internal Oblique Muscle
TAM = Transverse Abdominis Muscle

Source: NYSORA.COM
Transversus Abdominis Plane (TAP) Block

• At the mid-axillary line, the anterior rami of the T9-T12 and first lumbar nerves are found in the intermuscular plane between the internal oblique and transversus abdominis muscle.

• Blockade provides unilateral analgesia to skin, muscle, and parietal peritoneum of the anterior abdominal wall.

Orange arrow indicates needle trajectory
EOM = External Oblique Muscle
IOM = Internal Oblique Muscle
TAM = Transverse Abdominis Muscle

Source: NYSORA.COM
Rectus Sheath Block

- **Indications:** Surgery to umbilical region
 - A good option for upper abdominal surgery if epidural is not possible

- **Dosing:** 0.1ml/kg 0.25% bupivacaine to each side

- **Distribution:** Midline abdominal incision

- **Duration:** around 8-12 hrs

- **Complications:** Peritoneal entry and bowel injury

Source for both images: NYSORA.COM
Femoral Nerve Block

- **Indications:**
 - Surgery on the anterior thigh, femur, patella, or knee
 - Hip fracture analgesia perioperatively

- **Dosing:** 0.2-0.4ml/kg

- **Distribution:**
 - Derives from roots of L2-4
 - Anterior/medial thigh, knee, medial leg, medial foot
 - Hip, knee, and ankle joints
 - Indicated for surgery where anesthesia to these areas would be beneficial

- **Duration:** 8-12 hrs

- **Complications:** Intravascular injection, nerve injury

Source: NYSORA.COM
Femoral Nerve Block

Procedure occurs at the level of the femoral crease

- At this level, the nerve (hyperechoic) lies beneath the fascia iliaca and above the iliopsoas muscle (hypoechoic)

- The position of the nerve is immediately lateral to the artery

- From lateral to medial: NAVEL (Femoral Nerve, Artery, Vein, Empty Space, Lymphatics)

Orange arrow indicates needle trajectory
FN = Femoral Nerve
FA = Femoral Artery
Source: NYSORA.COM
Fascia Iliaca Block (3-in-1 Block)

- 3-in-1 block provides local anesthetic to three of the nerve branches from the lumbar plexus
- Blockade of the femoral nerve, lateral femoral cutaneous nerve, and obturator nerve
- Indicated for hip fractures
- Performed with accurate placement of local anesthetic along femoral nerve
- Mechanism for the block is the caudal, lateral and medial spread of the local anesthetic

Source: NYSORA.COM
Popliteal Sciatic Block

- Indications: foot & ankle surgery
 - Often combined with Saphenous block for lower extremity surgery to cover both femoral and sciatic nerve distribution
 - Variations: Fascia Iliaca plane block
 - Large volume plane block deposited beneath the fascia iliaca to spread to the femoral nerve and LFCN
- Dosing: 0.3-0.5ml/kg
- Distribution
 - Derives from roots of L4-S3
 - All of the lower extremity below the knee except the medial leg/foot
 - Indicated for surgery on the lower leg
- Complications: Intravascular injection, nerve injury
- Duration: around 8 – 12 hrs

Source: NYSORA.COM

CPN = Common Peroneal Nerve
TN = Tibial Nerve
Popliteal Sciatic Block

Procedure occurs in the popliteal fossa

- Identify the popliteal artery (PA) and popliteal vein (PV)
- At this level, the sciatic nerve has typically branched into the common peroneal nerve (CPN) and tibial nerve (TN)
- The CPN and TN appear as a hyper-echoic bundle that is lateral and superficial to the popliteal vein
- Branch point is variable—track the nerves up above the popliteal fossa to be certain that you are capturing both the CPN and TN together in the block site

Blue arrows indicate possible needle trajectory, depositing local anesthetic between CPN and TN, and above nerves.

Source: NYSORA.COM
Supraclavicular Block

• Indications
 - Upper extremity surgery
 - Most common US-guided approach to the brachial plexus (BP) due to ease and comprehensive analgesia for entire arm

• Dosing: 0.3-0.5ml/kg of 0.25% bupivacaine

• Complications
 • PTX, intravascular injection, nerve injury

• Duration: around 8 – 12 hrs

• Distribution
 - Divisions of the brachial plexus (roots of C5-T1)
 - Block reliably covers upper extremity
 - Spares the suprascapular nerve so may produce incomplete shoulder coverage

BP = Brachial Plexus
SA = Subclavian Artery
MSM = Middle Scalene Muscle
Supraclavicular Block

- Place probe superior to the clavicle and identify the subclavian artery

- Identify the subclavian artery (SA)

- The plexus is just superior & posterior to the SA

- Do not start block until you clearly identify pleura and rib deep to the brachial plexus (BP)

- Maintain pleura in view during procedure to reduce risk of pneumothorax

Blue arrows indicate needle trajectory

Source for both images: NYSORA.COM
Erector Spinae Plane (ESP) Block

Fascial plane block targeting spinal nerves

- Indications
 - Rib fractures, some thoracic or high abdominal surgery
 - Good safety profile as there is significant distance from block site to important structures such as spinal cord or major vessels

- Dosing: 0.5ml/kg/side of 0.25% bupivacaine

- Distribution
 - Block likely occurs at the ventral and dorsal rami of the spinal nerves, likely via diffusion back from site of injection in fascial plane

- Complications: PTX

- Duration: likely 8-12 hrs
Erector Spinae Plane (ESP) Block

Procedure occurs at the transverse process

- Erector spinae muscle lies on top of the transverse process
- Target the fascial plane deep to the muscle, just above the transverse process
- Orient the ultrasound probe in a longitudinal direction, adjacent to the palpated spinous process
- Slowly scan in a medial to lateral direction until the flattened hyperechoic shape (with rectangular acoustic shadow below) of the transverse process is identified
- Choose the most central spinous process for the block as LA will spread both cranially and caudally
- Injection of LA should spread along the fascial layer laterally and medially, similar to the spread seen with the TAP block injection.
- If injection shows spread into the muscle, advance needle further to get to appropriate compartment
<table>
<thead>
<tr>
<th>Block</th>
<th>Indications</th>
<th>Dosing for 0.25% Bupivacaine or 0.2% Ropivacaine</th>
<th>Distribution</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP</td>
<td>Lower abdominal</td>
<td>0.3-0.5ml/kg/side</td>
<td>T10-L1 nerve roots</td>
<td>Peritoneal entry, bowel injury</td>
</tr>
<tr>
<td>Rectus Sheath</td>
<td>Umbilicus region</td>
<td>0.2-0.3ml/kg/side</td>
<td>Midline abdominal incision</td>
<td>Peritoneal entry, bowel injury</td>
</tr>
<tr>
<td>Femoral</td>
<td>Anterior/medial lower extremity</td>
<td>0.2-0.4ml/kg</td>
<td>L2-4 nerve roots</td>
<td>Intravascular injection, nerve injury</td>
</tr>
<tr>
<td>Popliteal</td>
<td>Foot and ankle</td>
<td>0.3-0.5ml/kg</td>
<td>L4-S3 nerve roots</td>
<td>Nerve injury, intravascular injection</td>
</tr>
<tr>
<td>Supraclavicular</td>
<td>Upper extremity</td>
<td>0.3-0.5ml/kg</td>
<td>C5-T1 nerve roots</td>
<td>PTX, intravascular injection</td>
</tr>
<tr>
<td>ESP</td>
<td>Thoracic, high abdominal</td>
<td>0.5ml/kg/side</td>
<td>Ventral and dorsal rami of spinal nerves</td>
<td>PTX</td>
</tr>
</tbody>
</table>
Conclusions:

• Peripheral nerve blocks can be an important tool in multimodal analgesia, allowing reduced exposure to general anesthetics, opioid sparing, and improved pain control postoperatively

• Choice of peripheral nerve block is based on the sensory distribution of the nerves targeted and the planned surgery

• A thorough understanding of the anatomy of each block lowers the risk of common complications
References:

1. www.nysora.com (permission was granted to use all images from NYSORA)
2. Euroespa.com